US009424155B1

a2 United States Patent

Pizel et al.

US 9,424,155 B1
Aug. 23, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(1)

(52)

(58)

USE EFFICIENCY OF PLATFORM MEMORY
RESOURCES THROUGH FIRMWARE
MANAGED I/O TRANSLATION TABLE
PAGING

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Travis Pizel, Rochester, MN (US);

Naveen Rathi, Vikarabad (IN)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

Appl. No.: 15/008,126

Filed: Jan. 27, 2016

Int. Cl1.
GO6F 11/00
GO6F 1130
GO6F 9/50
GO6F 9/455
GO6F 3/06

U.S. CL
CPC

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

GOGF 11/301 (2013.01); GOGF 3/068
(2013.01); GOGF 3/0619 (2013.01); GO6F
3/0665 (2013.01); GOGF 9/45558 (2013.01):
GOGF 9/5077 (2013.01); GOGF 2009/45579
(2013.01)

Field of Classification Search
CPC GOGF 11/2082; GOGF 11/2094; GOGF
11/2025; GOGF 11/2023; GOG6F 12/109;
GOGF 12/1027; GOG6F 12/1036; GOGF 12/0712;
GOGF 12/145; GOGF 9/45558; GOGF 9/5077;
GOGF 9/45533
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
4,763,250 A 8/1988 Keshlear et al.
5,479,627 A 12/1995 Khalidi et al.
6,654,866 B2 11/2003 Hagersten et al.
6,877,158 B1* 4/2005 Arndt GOGF 12/0284
711/202
7,159,095 B2 1/2007 Dale et al.
7,721,068 B2 5/2010 Lowe et al.
7,752,417 B2* 7/2010 Manczak GOGF 11/3466
711/209
7,783,858 B2 8/2010 Chiang et al.
8,301,863 B2* 10/2012 Hallcccouevvnee. GO6F 12/1036
711/202
9,092,351 B2 7/2015 Greiner et al.
9,201,677 B2* 12/2015 Joshicccovovrnen.. GOGF 9/45558
2002/0169936 Al 11/2002 Murphy
2014/0129797 Al 5/2014 Arndt et al.
2015/0370592 Al* 12/2015 Tuchccoovvenna. GOGF 9/45558
718/1
2016/0062787 Al* 3/2016 Joshicoceeeen. GOGF 9/45558
718/1
FOREIGN PATENT DOCUMENTS
EP 533190 Bl 4/1996

* cited by examiner

Primary Examiner — Nadeem Igbal
(74) Attorney, Agent, or Firm — Patterson + Sheridan, LL.P

(57) ABSTRACT

Techniques are disclosed herein for paging /O translation
table entries. A host bridge of system hardware receives a
request to fetch a first segment of an 1/O translation table
associated with one of a plurality of logical partitions execut-
ing in a computing system. The host bridge identifies a con-
trol register associated with the first segment. The control
register includes a time base and an indication of whether the
first segment is paged out to a storage volume. Upon deter-
mining that the first segment is paged out to the storage
volume, a second segment is paged out from a location in
memory to the storage volume. The first segment is paged in
to the location.

20 Claims, 5 Drawing Sheets

Logical Partfion 1 115

client 05
118

Logical Parttion n 115

clientos

Hypervisor 110

Paging Service
uz

Handware 105

cPy Host Bridge
108 108

=
3
3

EE

Computing System 100

U.S. Patent

Virtual Hardware

Aug. 23, 2016 Sheet 1 of 5 US 9,424,155 B1
Logical Partition 1 115 Logical Partition n 115
Client OS Client OS
116 116

Virtual Hardware

117 117
Hypervisor 110
Paging Service
12
Hardware 105
1/0O Devices
109
I/O Translation
Tables
111
CPU Host Bridge
106 108
Memory
107

Computing System 100

FIG. 1

US 9,424,155 B1

Sheet 2 of 5

Aug. 23, 2016

U.S. Patent

¢ 9Old

D

G0¢c

<

G0¢

I-N

<

G0¢

<

{04

G0¢

LLL

¥

oIt
JosniadAH

SIt
Z uonived [eolboT

— Y-
It

| uonived [ealboT

01¢
sJio)s1boy
uone|suelL O/l

US 9,424,155 B1

Sheet 3 of 5

Aug. 23, 2016

U.S. Patent

€ 9Old

e o1
21 fniqe aseg awi]
N 17 U1 Amngereay
502 V1 _
—r——_——————————————— = —— — — TTe
ssaippy Alowapy
Y oLz
[]
®
50z Y] _
’ \.._\ s mmmo vME_
sie Y Aungeneay gL
|||||||||||||||||||||||||| TIe
_ ssaippy Aowapy
! Wi
— —
IT¢ |
< \J\ re mwwo _‘M_.t_
S1LE | Aupgejeay g ouwiL
—_——— 1€
0 | ssauppy Alowsy
50z YL
|
< |
~
LLL

N Ja1s1B8y |0J1u0D

N
19)5162 sSaIppy aseg

1 Jo1s169y |04ju0D

l
1915160y ssalppy asegq

0 Ja1siBay [ouon

0
1915162y ssaIppy aseg

U.S. Patent

Aug. 23, 2016 Sheet 4 of 5

{ Begin }

A 4

Receive a request to fetch an 1/0 segment from /O
translation table, where the request includes an /O

address

A 4

Evaluate a base address register and control register d%
corresponding to the I/O address

420

N

in the control register

Update the time base value

425

Fetch the I/O translation
segment from memory

A

430

Perform /O operation

Is the I/O translation
segment paged in?

US 9,424,155 B1
400
405
Y
410
435
~
Generate fault interrupt to
hypervisor
440
~

Stall /O operation until the
fault is satisfied

End

FIG. 4

U.S. Patent Aug. 23,2016 Sheet 5 of 5

Evaluate the availability bit in control register N

US 9,424,155 B1

510

Is the I/O

translation No

515
N

segment
aged in?,

520
Has segment

Increment N

A

expired?

No

Reset the availability bit

Y

Page out the 1/O translation segment

A 4

Page in the requested I/O translation segment; set
availability bit in the control register

Y

Send interrupt signal; resume 1/O operation

End

FIG. 5

US 9,424,155 B1

1
USE EFFICIENCY OF PLATFORM MEMORY
RESOURCES THROUGH FIRMWARE
MANAGED I/O TRANSLATION TABLE
PAGING

BACKGROUND

Embodiments presented herein generally relate to com-
puter systems, and more specifically, to paging I/O translation
table entries.

Generally, computing systems rely on /O translation
tables to provide a mapping of a specified virtual I/O address
to a physical memory address in a range of addresses that a
given /O device may access. During a direct memory address
(DMA) read or write operation, the I/O translation table maps
a segment to an address in physical memory, e.g., using a
Translation Control Entry (TCE) table in an I/O memory
management unit (IOMMU). A computing system may pro-
vide an 1/O translation table for each /O device to improve
DMA operations, prevent conflicting memory accesses by
logical partitions that share the memory, and translate from an
address in a peripheral bus (e.g., a PCI bus) to a memory
address.

Further, a computing system may be configured to provide
hardware virtualization. For instance, the computing system
may spawn, via a hypervisor, multiple logical partitions,
where each logical partition serves as a distinct virtual com-
puting system that shares physical hardware resources (e.g.,
processing, storage capacity, etc.) with other logical parti-
tions. A client operating system (OS) executing in a logical
partition typically must communicate with the hypervisor to
associate an entry in the I/O translation table of a device with
an address of a page of memory assigned to the logical par-
tition. As the bandwidth supported by I/O devices increases,
larger 1/O translation tables are needed to avoid the client OS
from having to frequently interface with the hypervisor to
configure the I/O translation table entries. However,
increased sizes in 1/O translation tables result in increased
consumption of system resources, such as memory—which
leads to the hypervisor having fewer resources to assign to
logical partitions in the computer system. Further, because
1/O operations are typically performed in bursts, large por-
tions of I/O translation table may be unused during a number
of periods, resulting in less than optimal resource usage.

SUMMARY

One embodiment presented herein discloses a method. The
method generally includes receiving a request to fetch a first
segment of an I/O translation table associated with one of a
plurality of logical partitions executing in a computing sys-
tem. The method also includes identifying a control register
associated with the first segment. The control register
includes a time base and an indication of whether the first
segment is paged out to a storage volume. Upon determining
that the first segment is paged out to the storage volume, (i) a
second segment is paged out from a location in memory to the
storage volume, and (ii) the first segment is paged in to the
location.

Another embodiment presented herein discloses a com-
puter program product. The computer program product
includes a non-transitory computer-readable storage medium
having instructions, which, when executed on a processor,
performs an operation. The operation itself includes receiving
a request to fetch a first segment of an 1/O translation table
associated with one of a plurality of logical partitions execut-
ing in a computing system. The operation also includes iden-

10

15

20

25

30

35

40

45

50

55

60

65

2

tifying a control register associated with the first segment.
The control register includes a time base and an indication of
whether the first segment is paged out to a storage volume.
Upon determining that the first segment is paged out to the
storage volume, (i) a second segment is paged out from a
location in memory to the storage volume, and (ii) the first
segment is paged in to the location.

Yet another embodiment presented herein discloses a sys-
tem having a processor and a memory. The memory stores
code, which, when executed on the processor, performs an
operation. The operation itself includes receiving a request to
fetch a first segment of an 1/O translation table associated with
one of a plurality of logical partitions executing in a comput-
ing system. The operation also includes identifying a control
register associated with the first segment. The control register
includes a time base and an indication of whether the first
segment is paged out to a storage volume. Upon determining
that the first segment is paged out to the storage volume, (i) a
second segment is paged out from a location in memory to the
storage volume, and (ii) the first segment is paged in to the
location.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

So that the manner in which the above-recited aspects are
attained and can be understood in detail, a more particular
description of embodiments of the present disclosure, briefly
summarized above, may be had by reference to the appended
drawings. Note, however, that the appended drawings illus-
trate only typical embodiments of this present disclosure and
are therefore not considered limiting of its scope, for the
present disclosure may admit to other equally effective
embodiments.

FIG. 1 illustrates an example computing system configured
to page entries in and out of an I/O translation table, according
to one embodiment.

FIG. 2 illustrates an abstraction of an I/O translation table,
according to one embodiment.

FIG. 3 illustrates an example register structure for I/O
translation table entries, according to one embodiment.

FIG. 4 illustrates a method for translating an I/O address
via the I/O translation table, according to one embodiment.

FIG. 5 illustrates a method for processing a fault interrupt
during I/O address translation, according to one embodiment.

DETAILED DESCRIPTION

Embodiments presented herein disclose techniques for
providing on-demand paging of 1/O translation table entries.
In one embodiment, a computing system allocates an /O
translation table for each connected I/O device (e.g., storage
devices, network adapters, etc.). Further, a hypervisor in the
computing system includes a service that pages segments of
an [/O translation table out to a paging device (e.g., a storage
volume) owned by the hypervisor. The service may page in an
1/O translation table segment from the paging device when
the corresponding I/O device attempts to access the I/O trans-
lation table. Doing so allows the hypervisor to assign /O
translation tables to a given device without needing to con-
sume a large amount of system memory (unless the 1/O traffic
reaches a level that requires a significant portion of the I/O
translation table be paged in).

In one embodiment, the hypervisor associates each 1/O
translation table segment with a base address register in a
configuration space of the I/O device. The base address reg-
ister points to a virtual memory address location of the asso-

US 9,424,155 B1

3

ciated /O translation table segment. Further, the hypervisor
associates the base address register with a control register that
provides information regarding the underlying I/O translation
table segment. In particular, the control register may include
an availability bit that indicates whether the /O translation
segment is currently paged in. If an I/O translation segment is
currently paged in, then the segment may be accessed in a
DMA operation. Further, the control register may include a
time base indicating when the I/O translation table segment
was last fetched.

In the event a device driver of a given client operating
system (OS) attempts to perform an I/O operation for an 1/0
device on a given address, a peripheral host bridge in the
computer system (e.g., a PCI host bridge) attempts a fetch of
a corresponding 1/O translation table segment. The PCI host
bridge may determine, based on the availability bit of the
control register associated with the segment, whether the [/O
translation table segment is currently paged in. If so, then the
PCI host bridge fetches the I/O translation segment from
memory, which allows the device driver to proceed with the
1/0 operation. Otherwise, if the I/O translation table segment
is currently paged out to the paging device, the PCI host
bridge generates a fault interrupt and stalls the I/O operation
until the fault interrupt is satisfied.

When the PCI host bridge generates the fault interrupt, the
paging service may identify an 1/O translation table segment
that is currently paged into memory but has not been used for
a specified amount of time. To do so, the paging service may
evaluate the time base value in a control register of each
paged-in [/O translation table segment to determine whether
the elapsed time exceeds a threshold. If the paging service
identifies such an I/O translation table segment, the paging
service pages out that I/O translation table segment from its
memory location and then pages in the 1/O translation table
segment associated with the fault interrupt in that location.
Doing so allows the host bridge to resume the previously
stalled 1/O operation.

Advantageously, by paging out I/O translation table seg-
ments that are not recently used (or less frequently used) to a
paging device and by paging in the segments as needed, the
hypervisor can maintain relatively small I/O translation tables
for each I/O device. As a result, the hypervisor may allocate
more memory resources towards logical partitions in the sys-
tem. Further, even if the /O translation tables are relatively
small, because the I/O translation table segments are paged in
on an on-demand basis, a client operating system (OS) does
not need to interface with the hypervisor as frequently to
re-set [/O translation table segments, resulting in further effi-
ciency.

FIG. 1 illustrates an example computing system 100 con-
figured to page entries in and out of an [/O translation table,
according to one embodiment. As shown, the computing sys-
tem 100 includes hardware 105, a hypervisor 110, and one or
more logical partitions 1-# 115. The computing system 100 is
representative of a physical computing platform that hosts
multiple logical partitions 1-z that may be owned by indepen-
dent entities that share physical resources with one another,
i.e., the hardware 105. Of course, the computing system 100
may include a number of additional components, and the
components described relative to FIG. 1 are presented for
explanatory purposes.

As shown, the hardware 105 includes a CPU 106, a
memory 107, ahostbridge 108, and multiple I/O devices 109.
The CPU 106 is representative of a single CPU, multiple
CPUs, a single CPU having multiple processing cores, and
the like. Similarly, memory 107 may be a random access
memory. While the memory 107 is shown as a single identity,

10

15

20

25

30

35

40

45

50

55

60

65

4

it should be understood that the memory 107 may comprise a
plurality of modules, and that the memory 107 may exist at
multiple levels, from high speed registers and caches to lower
speed but larger DRAM chips.

In one embodiment, the host bridge 108 interconnects
peripheral devices (e.g., the I/O devices 109) with the CPU
106 and the memory 107. For instance, the host bridge 108
allows the CPU 106 and the I/O devices 109 to access the
memory 107. Further, the host bridge 108 provides data
access mappings between the CPU 106 and the I/O devices
109. Further still, the host bridge 108 may provide the hyper-
visor 110 access to a configuration space of the /O devices
109.

Each logical partition 115 uses a subset of the resources
provided by the hardware 105 and is virtualized as a distinct
computing instance that has its own hardware (virtual hard-
ware 117) and executes a client operating system (OS) 116.
For each logical partition 115, the hypervisor 110 manages
the corresponding virtual hardware 117 that includes emu-
lated hardware, such as a CPU and memory.

In one embodiment, the memory 107 includes one or more
1/O translation tables 111. The hypervisor 110 maintains
memory allocations of an I/O translation table 111 for each
1/0 device 109. An 1/O translation table 111 provides a range
of memory addresses that the I/O device 109 is allowed to
access. A size of the /O translation table 111 can vary. For
instance, some [/O translation tables 111 may be relatively
small (e.g., 4 MB), whereas others can be larger (e.g., 2 GB).
The hypervisor 110 may map a segment of the /O translation
table segment to the memory 107.

In one embodiment, the client OS 116 of a given logical
partition 115 performs a series of interface calls to the hyper-
visor 110 to associate a given 1/O translation segment with an
address in the memory 107 assigned to the logical partition
115. Thereafter, the client OS 116 may request a given 1/O
device to perform an I/O operation to a location in the
memory 107. To do so, the client OS 116 may send an I/O
translation token to the physical I/O device 109 associated
with the corresponding 1/O translation table segment. The
host bridge 108 then evaluates the 1/O translation table seg-
ment to validate that the underlying physical memory address
is actually associated with the logical partition 115 (e.g., and
not associated with another logical partition 115 or is other-
wise unauthorized for the logical partition 115 to access).

As stated above, an 1/O translation table 111 can have a
relatively large size, e.g., for the purpose of reducing the
amount of times that the client OS 116 needs to interface with
the hypervisor 110 to set segments of the 1/O translation table
111. However, a drawback to setting the size of an /O trans-
lation table 111 to be relatively large is sacrifices in perfor-
mance efficiency. For instance, 1/O traffic is generally per-
formed in bursts, so segments of an 1/O translation table 111
can be infrequently accessed (and thus, memory resources
that could be assigned to logical partitions 115 is wasted).

To address this issue, in one embodiment, the I/O transla-
tion tables 111 are configured to be a relatively small size in
the memory 107. Further, the hypervisor 110 includes a pag-
ing service 112 that is configured to page unused (and not
recently used) segments of each /O translation table 111 out
to a paging device (e.g., a physical storage device or logical
storage volume associated with the logical partition) main-
tained by the hypervisor 110. As further described below, the
paging service 112 may page the segments back into the I/O
translation table in memory 107 on an on-demand basis.

In one embodiment, the hypervisor 110 configures a reg-
ister structure in configuration space for a given I/O device
109. The register structure includes base address registers that

US 9,424,155 B1

5

point to segments in the I/O translation table 111 associated
with the device 109. Further, each base address register may
be associated with a control register that provides information
for the corresponding segment of the 1/O translation table
111. For example, the control register may provide a time
base of the last fetch of the segment. The control register may
also provide an indicator of whether the segment is currently
paged out to the paging device.

In one embodiment, during initialization of the computing
system 100, the paging service 112 may determine which
segments of a given 1/O translation table 111 to page out from
memory of a logical partition 115 to a paging device. For
instance, the paging service 112 may page out segments from
the second half of memory allocated to logical partition 115.
When a device driver of a given I/O device 109 requests to
perform a DMA action on a given location in memory 107,
the device driver sends an I/O translation token to the PCI host
bridge 108. In turn, the host bridge 108 determines whether
the corresponding 1/O translation table 111 segment is cur-
rently paged in or out. For instance, if the segment is currently
paged in, the PCI host bridge processes the request normally.
On the other hand, if the segment is currently paged out, the
PCThost bridge may generate a fault interrupt. This process is
further described below.

FIG. 2 illustrates an abstraction of an example I/O transla-
tion table 111, according to one embodiment. [llustratively,
FIG. 2 depicts an example /O translation table 111 of a given
1/0 device 109, having block segments 205 0-N. The paging
service 112 may page each of the block segments 205 0-N in
or out, based on demand for a given segment 205. Illustra-
tively, various block segments 205 may be assigned to each of
the logical partitions 115.

For example, FIG. 2 depicts a number of block segments
205 as assigned to logical partition 1 115, and a number of
block segments 205 as assigned to logical partition 2 115. The
data paths between logical partition 1 115 and the assigned
block segments 205 illustrates that the logical partition 1 115
can only access the assigned block segments 205 of the [/O
translation table 111 to store, retrieve, or change data. Simi-
larly, the data paths between logical partition 2 115 and the
assigned block segments 205 illustrates that the logical par-
tition 2 115 can only access the assigned block segments 205
of the I/O translation table 111 to store, retrieve, or change
data.

Further, I/O translation registers 210 may point to each
block segment 205, as indicated by the dotted lines pointing
to segments of the I/O translation table 111. As further
described below, a given 1/O translation register 210 may
contain information about its associated block segment 205,
e.g., whether the block segment 205 is currently paged out,
when the block segment 205 was last accessed, etc.

FIG. 3 illustrates an example register structure for 1/O
translation table segments, according to one embodiment.
Iustratively, each segment is associated with both a base
address register 310 and a control register 315. As stated, the
hypervisor 110 may configure a configuration space for the
1/0 device 109 such that the base address registers 310 and
control registers 315 each correspond to a given segment 205,
where each base address register 310 and control register 315
provides information for a given segment 205.

In one embodiment, a base address register 310 points to a
particular block segment 205 of an associated I/O translation
table 111. In particular, a base address register 310 includes a
memory address 311, which indicates a starting location of a
corresponding block segment 205 (as represented by the dot-

20

25

40

45

50

55

6

ted arrow pointing to a given bold line). Further, a control
register 315 includes a time base 316 and an availability bit
317.

In one embodiment, the time base 216 indicates the time of
the most recent instance where the host bridge 108 fetched the
associated segment 205. A fault interrupt handler in the pag-
ing service 112 may evaluate the time base 216 to determine
whether the corresponding segment 205 has been paged in
memory 107 for over a specified threshold amount of time. If
s0, the paging service 112 might page out the segment 205 to
the paging device, as part of the fault interrupt handling
process.

In one embodiment, the availability bit 317 indicates
whether the associated segment 205 is currently paged in to
memory 107. For example, if a given availability bit 317 is set,
the associated segment 205 is currently paged in the memory
107. An /O device 109 that requests access to the associated
segment 205 can perform an I/O operation using the segment
205 as normal. Otherwise, an availability bit 317 thatis not set
indicates that the associated segment 205 is currently paged
out. If paged out, the host bridge 108 may generate a page
fault that is to be handled by the hypervisor 110. The hyper-
visor 110 may identify an available location in memory to
page in the requested segment 205.

FIG. 4 illustrates a method 400 for translating an /O
address via the /O translation table, according to one
embodiment. As shown, method 400 begins at step 405,
where the host bridge 108 receives a request to fetch a seg-
ment from a given I/O translation table from a device driver
associated with a given I/O device 109. For instance, the
device driver may send the request when performing an 1/O
operation on a location in memory 107. The request may be in
the form of a token that indicates a memory address pointing
to the I/O translation table segment.

At step 410, the host bridge 108 identifies the base address
register and control register associated with the I/O transla-
tion table segment using the specified memory address. As
stated, the control register associated with the I/O translation
table provides an availability bit that allows the host bridge
108 to determine whether the segment is currently paged in,
and not currently maintained in a paging device. For instance,
the availability bit is set if the segment is currently paged in.

At step 415, the host bridge 108 determines whether the [/O
translation segment is paged in, based on the evaluation of the
base address register and the control register associated with
the segment. The segment being paged in indicates that the
host bridge 108 can proceed with translating the segment to
the mapped physical memory address (because the segment is
not paged out to the paging device). If so, then the host bridge
108 updates the time base value in the control register (at step
420). Further, at step 425, the host bridge 108 fetches the [/O
translation segment from memory. Doing so allows the host
bridge 108 to determine the mapping between the /O trans-
lation segment and the physical memory address to be used in
the 1/O operation. At step 430, the host bridge 108 proceeds
with the /O operation.

However, if the I/O translation segment is currently paged
out to a paging device associated with the logical partition, the
host bridge 108 generates a fault interrupt for the hypervisor
110 to process. This interrupt handling process is further
described relative to FIG. 5. At step 440, the host bridge 108
stalls the I/O operation until the fault is handled. For instance,
the host bridge 108 may stall until the paging service 112 has
paged out an I/O translation table segment that has not been
recently accessed and pages in the requested segment into the

US 9,424,155 B1

7

memory space of the paged out segment. Once the fault is
satisfied, the host bridge 108 performs the I/O operation (at
step 430).

FIG. 5 illustrates a method 500 for processing a fault inter-
rupt during I/O address translation, according to one embodi-
ment. More specifically, method 500 describes the process
that occurs after the host bridge 108 generates an /O trans-
lation fault interrupt. At step 405, the paging service 112
evaluates the availability bit of a control register at a given
index value N. At step 510, the paging service 112 deter-
mines, based on the availability bit, whether the 1/O transla-
tion table segment is currently paged in. If not, the paging
service 112 increments the index N (at step 515), which
allows the host bridge 108 to evaluate availability bit of the
next control register (at step 505). That is, the paging service
112 continues to iterate through the control registers.

If'the I/O translation table segment is paged in, then at step
520, the paging service 112 may determine whether the I/O
translation table segment is expired. For example, the paging
service 112 can evaluate, using the time base value in the
control register, whether the time that has elapsed since the
last access of that segment exceeds a specified threshold. If
not, then that I/O translation segment remains paged in, and
the method 500 returns to step 515, where the paging service
112 increments N and evaluates the availability bit in the next
control register.

If the segment is expired, then at step 525, the paging
service 112 resets the availability bit of that control register to
mark that I/O translation segment as unavailable. At step 530,
the paging service 112 pages out the I/O translation segment
to the paging device associated with the logical partition. At
step 535, the paging service 112 then retrieves the requested
1/O translation table segment from the paging device. The
paging service 112 then associates the retrieved segment with
the memory space of the now-paged out segment. Further, the
paging service 112 sets the availability bit of the retrieved
segment to indicate that the retrieved segment is now paged
in. At step 540, the paging service 112 sends an end-of-
interrupt signal to the host bridge 108. In turn, the host bridge
108 receives the signal and retries the I/O operation that had
been stalled due to the fault interrupt.

The descriptions ofthe various embodiments of the present
disclosure have been presented for purposes of illustration,
but are not intended to be exhaustive or limited to the embodi-
ments disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments. The
terminology used herein was chosen to best explain the prin-
ciples of the embodiments, the practical application or tech-
nical improvement over technologies found in the market-
place, or to enable others of ordinary skill in the art to
understand the embodiments disclosed herein.

In the preceding discussion, reference is made to embodi-
ments presented in this disclosure. However, the scope of the
present disclosure is not limited to specific described embodi-
ments. [nstead, any combination of the following features and
elements, whether related to different embodiments or not, is
contemplated to implement and practice contemplated
embodiments. Furthermore, although embodiments dis-
closed herein may achieve advantages over other possible
solutions or over the prior art, whether or not a particular
advantage is achieved by a given embodiment is not limiting
of the scope of the present disclosure. Thus, the following
aspects, features, embodiments and advantages are merely
illustrative and are not considered elements or limitations of
the appended claims except where explicitly recited in a
claim(s). Likewise, reference to “the invention” shall not be

10

15

20

25

30

35

40

45

50

55

60

8

construed as a generalization of any inventive subject matter
disclosed herein and shall not be considered to be an element
or limitation of the appended claims except where explicitly
recited in a claim(s).

Aspects of the present disclosure may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, microcode, etc.)
or an embodiment combining software and hardware aspects
that may all generally be referred to herein as a “circuit,”
“module” or “system.”

Embodiments presented herein may be adapted as part of a
system, a method, and/or a computer program product. The
computer program product may include a computer readable
storage medium (or media) having computer readable pro-
gram instructions thereon for causing a processor to carry out
aspects of the present disclosure.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an elec-
tronic storage device, a magnetic storage device, an optical
storage device, an electromagnetic storage device, a semicon-
ductor storage device, or any suitable combination of the
foregoing. A non-exhaustive list of more specific examples of
the computer readable storage medium includes the follow-
ing: a portable computer diskette, a hard disk, a random
access memory (RAM), aread-only memory (ROM), an eras-
able programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be con-
strued as being transitory signals per se, such as radio waves
or other freely propagating electromagnetic waves, electro-
magnetic waves propagating through a waveguide or other
transmission media (e.g., light pulses passing through a fiber-
optic cable), or electrical signals transmitted through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present disclosure may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or either
source code or object code written in any combination of one
or more programming languages, including an object ori-
ented programming language such as Smalltalk, C++ or the
like, and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages.

The computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s computer,

US 9,424,155 B1

9

as a stand-alone software package, partly on the user’s com-
puter and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN) or
a wide area network (WAN), or the connection may be made
to an external computer (for example, through the Internet
using an Internet Service Provider). In some embodiments,
electronic circuitry including, for example, programmable
logic circuitry, field-programmable gate arrays (FPGA), or
programmable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present disclosure.

Aspects of the present disclosure are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the disclosure. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be pro-
vided to a processor of a general purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions,
which execute via the processor of the computer or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks. These computer read-
able program instructions may also be stored in a computer
readable storage medium that can direct a computer, a pro-
grammable data processing apparatus, and/or other devices to
function in a particular manner, such that the computer read-
able storage medium having instructions stored therein com-
prises an article of manufacture including instructions which
implement aspects of the function/act specified in the flow-
chart and/or block diagram block or blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer implemented
process, such that the instructions which execute on the com-
puter, other programmable apparatus, or other device imple-
ment the functions/acts specified in the flowchart and/or
block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments presented
herein. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
instructions, which comprises one or more executable
instructions for implementing the specified logical function
(s). In some alternative implementations, the functions noted
in the block may occur out of the order noted in the figures.

For example, two blocks shown in succession may, in fact,
be executed substantially concurrently, or the blocks may
sometimes be executed in the reverse order, depending upon
the functionality involved. It will also be noted that each block
of'the block diagrams and/or flowchart illustration, and com-
binations of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard-

30

40

45

50

60

10

ware-based systems that perform the specified functions or
acts or carry out combinations of special purpose hardware
and computer instructions.

While the foregoing is directed to embodiments of the
present disclosure, other and further embodiments of the dis-
closure may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

What is claimed is:

1. A method comprising:

receiving a request to fetch a first segment of an /O trans-
lation table associated with one of a plurality of logical
partitions executing in a computing system;

identifying a control register associated with the first seg-
ment, wherein the control register includes a time base
and an indication of whether the first segment is paged
out to a storage volume; and

upon determining that the first segment is paged out to the
storage volume, (i) paging out a second segment from a
location in memory to the storage volume and (ii) paging
the first segment in to the location.

2. The method of claim 1, further comprising, upon deter-

mining that the first segment is paged in:

updating the time base; and

fetching the first /O translation segment.

3. The method of claim 1, wherein the storage volume is
maintained by a hypervisor executing in the computing sys-
tem.

4. The method of claim 1, further comprising, prior to
paging out the second segment:

generating a fault interrupt directed to a hypervisor execut-
ing in the computing system; and

stalling an 1/O operation associated with the request to
fetch the first segment of the I/O translation table.

5. The method of claim 4, wherein the fault interrupt is

satisfied after paging the first segment in to the location.
6. The method of claim 5, further comprising:
resuming the 1/O operation after the fault interrupt is sat-
isfied.
7. The method of claim 1, wherein the indication of
whether the first segment is paged out to the paging device is
a bit in the control register that is set when the first segment is
paged in.
8. A computer program product, comprising:
a non-transitory computer-readable storage medium hav-
ing instructions, which, when executed on a processor,
perform an operation comprising:
receiving a request to fetch a first segment of an 1/O
translation table associated with one of a plurality of
logical partitions executing in a computing system,

identifying a control register associated with the first
segment, wherein the control register includes a time
base and an indication of whether the first segment is
paged out to a storage volume, and

upon determining that the first segment is paged out to
the storage volume, (i) paging out a second segment
from a location in memory to the storage volume and
(i1) paging the first segment in to the location.

9. The computer program product of claim 8, wherein the
operation further comprises, upon determining that the first
segment is paged in:

updating the time base; and

fetching the first /O translation segment.

10. The computer program product of claim 8, wherein the
storage volume is maintained by a hypervisor executing in the
computing system.

US 9,424,155 B1

11

11. The computer program product of claim 8, wherein the
operation further comprises,

prior to paging out the second segment:

generating a fault interrupt directed to a hypervisor execut-

ing in the computing system; and

stalling an I/O operation associated with the request to

fetch the first segment of the I/O translation table.

12. The computer program product of claim 11, wherein
the fault interrupt is satisfied after paging the first segment in
to the location.

13. The computer program product of claim 12, wherein
the operation further comprises:

resuming the 1/O operation after the fault interrupt is sat-

isfied.

14. The computer program product of claim 8, wherein the
indication of whether the first segment is paged out to the
paging deviceis a bitin the control register that is set when the
first segment is paged in.

15. A system, comprising:

a processor; and

a memory storing code, which, when executed on the pro-

cessor, performs an operation, comprising:

receiving a request to fetch a first segment of an 1/O
translation table associated with one of a plurality of
logical partitions executing in a computing system,

identifying a control register associated with the first
segment, wherein the control register includes a time

10

20

25

12

base and an indication of whether the first segment is
paged out to a storage volume, and

upon determining that the first segment is paged out to
the storage volume, (i) paging out a second segment
from a location in memory to the storage volume and
(i1) paging the first segment in to the location.

16. The system of claim 15, wherein the operation further
comprises, upon determining that the first segment is paged
in:

updating the time base; and

fetching the first /O translation segment.

17. The system of claim 15, wherein the storage volume is
maintained by a hypervisor executing in the computing sys-
tem.

18. The system of claim 15, wherein the operation further
comprises, prior to paging out the second segment:

generating a fault interrupt directed to a hypervisor execut-

ing in the computing system; and

stalling an 1/O operation associated with the request to

fetch the first segment of the I/O translation table.

19. The system of claim 18, wherein the fault interrupt is
satisfied after paging the first segment in to the location.

20. The system of claim 19, wherein the operation further
comprises:

resuming the 1/O operation after the fault interrupt is sat-

isfied.

